Safety-Related Multi-Core ECUs with AUTOSAR

Niko Böhm, Software Architect Operating Systems
23.01.2014
Safety-Related Multi-Core ECUs with AUTOSAR

Agenda

• About EB Automotive
• The Importance of Functional Safety
• EB tresos Safety Products
• New Challenges: Multi-Core Architectures for Safety Applications
Agenda

• About EB Automotive
• The Importance of Functional Safety
• EB tresos Safety Products
• New Challenges: Multi-Core Architectures for Safety Applications
About EB Automotive

EB solution for the automotive world

- **Infotainment software and services**
 - EB street director – a navigation software platform for automotive and consumer markets
 - EB GUIDE – a development platform for multimodal HMIs for infotainment systems, digital instrument clusters and head-up display
 - Global software integration and engineering services

- **Driver Assistance software and services**
 - EB Assist ADTF – a software development environment for driver assistance functions
 - Electronic horizon and test drive recording solutions
 - Driver Assistance modules and algorithms

- **ECU software and services**
 - EB tresos – a family of integrated software tools used in ECUs, based on AUTOSAR standards
 - Complete solutions for: basic software configuration, debugging, cluster emulation and bus analysis products and services
 - Single-Core and Multi-Core Operating Systems, **Functional Safety Solutions**
Agenda

• About EB Automotive
• The Importance of Functional Safety
• EB tresos Safety Products
• New Challenges: Multi-Core Architectures for Safety Applications
From IEC 62304 Standard:

“There is no known method to guarantee 100% safety for any kind of software. There are three major principles which promote safety for medical device software:

1. Risk management
2. Quality management
3. Software engineering”
From IEC 62304 Standard:

“There is no known method to guarantee 100 % safety for any kind of software. There are **three major principles** which promote safety for medical device software:

1. *Risk management*
2. *Quality management*
3. *Software engineering*”
Risk Control as part of risk management

• The **goal** of risk control is to reduce the risk to an “acceptable level”.

• **Methods** of risk control *(in order of preference!):*

 1. Eliminate the risk *(by design)*
 Easiest by omitting the functionality which creates the risk.

 2. Implement protective measures
 E.g., fault detection, prevention of fault propagation *(freedom from interference)*, ...

 3. Provide adequate information
 E.g., warnings, guidance in the safety manual, ...
Risk Control as part of risk management

- **The goal** of risk control is to reduce the risk to an “acceptable level”.
- **Methods** of risk control *(in order of preference!)*:

1. **Eliminate the risk (by design)**
 Easiest by omitting the functionality which creates the risk.

2. **Implement protective measures**
 E.g., fault detection, prevention of fault propagation *(freedom from interference)*, ...

3. **Provide adequate information**
 E.g., warnings, guidance in the safety manual, ...
Freedom from Interference (ISO 26262)

Memory
- Unintended writing to memory of another partition
- Register/Configuration corruption due to unintended writing to processor registers

CPU Time
- Blocking of partitions
- Wrong allocation of processor execution time

Communication
- Loss of communication
- Insertions of messages
Agenda

- About EB Automotive
- The Importance of Functional Safety
- EB tresos Safety Products
- New Challenges: Multi-Core Architectures for Safety Applications
EB tresos Safety Products for AUTOSAR

EB tresos Safety OS
- Protected microkernel operating system

EB tresos Safety TimE Protection
- Alive supervision
- Deadline monitoring
- Control flow monitoring

EB tresos Safety E2E Protection
- Inter-ECU communication protection

EB tresos Safety RTE
- Safe handling of RTE-service between SW in different memory partitions
EB tresos Safety Architecture*

Safety RTE for protected communication between Memory Partitions

Safety OS:
- Data Protection
- Stack Protection
- Context Protection
- OS Protection
- Hardware Error management

Safety E2E Protection for safe communication to other ECUs

Safety OS:
- Data Protection
- Stack Protection
- Context Protection
- OS Protection
- Hardware Error management

Safety TimE Protection for alive supervision, deadline and controlflow monitoring

* example configuration; EB tresos Safety products allow a very flexible partitioning depending on the customer project needs.
EB tresos Safety TimE Protection

Alive Supervision
- Control flow monitoring
- Deadline Monitoring
The Protection Wrapper is customized for each SW-C with the smallest amount of overhead.
A Safe Operating System

Supervision Mode

- Save caller context
- Prepare protected Kernel environment
- Task activation
- Event handling
- Error handling
- ...
A Safe Operating System

Supervision Mode

- Task queue
- Event list
- ...

System Call
- Save caller context
- Prepare protected Kernel environment

OS Service
- Task activation
- Event handling
- Error handling
- ...

Dispatch
- Determine and prepare next task

Context Switch
- Switch Memory Partition
- Load registers including Stack Pointer and Program Counter

EB tresos Safety OS: Certified up to ASIL D / SIL 3
Availability

EB tresos Safety Products are available for several Microcontrollers.

![Freescale](image1.png) ![Texas Instruments](image2.png) ![ST](image3.png) ![Infineon](image4.png) ![Renesas](image5.png)
Agenda

- About EB Automotive
- The Importance of Functional Safety
- EB tresos Safety Products
- **New Challenges: Multi-Core Architectures for Safety Applications**
Multi-Core Architectures for Safety Applications

Core0

SWC

SWC

SWC

RTE

OS

BSW

MCU

ASIL SW

QM SW

OS

BSW

ASIL SW

QM SW

© Elektrobit (EB), 2014
New Challenges

Multi-Core Architectures for Safety Applications

Core0

SWC

SWC

RTE

OS

BSW

Core1

Core2

ASIL SW

QM SW

MCU

© Elektrobit (EB), 2014 21
Architecture: The CDD Approach

- Use a standard single core AUTOSAR system on one core. This acts as a master for the rest of the system.

- Use CDD(s) to connect to the other cores.
New Challenges

One AUTOSAR Core + CDD Cores

Already used in projects ("first step to multi-core")
New Challenges

Architecture: Multiple OS Instances

• Use different operating systems on different cores

• Loose coupling still possible via core-2-core CDD

• Safety OS instances need to protect themselves from other cores
New Challenges

Multi-Core Examples (1)

![Diagram](image)

- Core0
 - SWC
 - RTE
 - OS
 - BSW
 - C2C

- Core1
 - SWC
 - RTE
 - CDD
 - OS
 - C2C

- Core2
 - CDD

- MCU

ASIL SW

QM SW

- 1x Safety OS
- 1x QM OS
- 1x CDD Core
Multi-Core Examples (2)

- Core0
 - SWC
 - RTE
 - OS
 - BSW
 - C2C

- Core1
 - SWC
 - RTE
 - CDD
 - OS
 - C2C

- Core2
 - SWC
 - RTE
 - CDD
 - OS

MCU

- ASIL SW
- QM SW

- 1x Safety OS
- 2x QM OS
New Challenges

Multi-Core Examples (3)

- 1x Safety OS
- 1x Multi-core QM OS
The AUTOSAR 4.0 approach:

• Group SWCs to partitions and spread them across the available cores
• BSW on one core
• One configuration for all cores
Multi-Core Safety OS
Multi-Core Challenges

• **Lessons learned from multi-core OS (QM):**
 – Mapping of SWCs is the critical topic for success / failure
 • Communication time between cores can be quite high
 – General benefit to timing is often overestimated

• **Multi-core and safety require advanced concepts for:**
 – Cross-core API (e.g., task activation on other cores)
 – Error handling (on which core shall ErrorHook() be invoked?)
Summary

- **Functional Safety Software** is becoming more and more important for the automotive industry
- EB offers a complete **Safety Product Portfolio (OS, TimE, E2E, RTE)**
- **Multi-Core** architectures are available – but with limitations
- Under development: **EB tresos Safety OS** with seamless multi-core integration
Contact us!

Sales.automotive@elektrobit.com
automotive.elektrobit.com